Anasayfa
Matematiksel Bilgi Matematiksel Bilgi
Matematiksel Teknoloji Matematiksel Teknoloji
Matematiksel Sanat Matematiksel Sanat
Matematik Kültürü Matematik Kültürü
Matematikle Eğlence Matematikle Eğlence
İletişim
Site içi arama
ZİYARETÇİLERİMİZ
Çevrimiçi 92 ziyaretçi
BIr CIft soz
Geometri zekayiaydinlatir ve aklidogru yola sokar. Onun butun kanitlariacik ve duzenlidir. Cok iyi duzenlendiginden geometrik mantik yurutmeye hata girmesi neredeyse imkansizdir. Bu nedenle surekli geometriye basvuran bir aklin hataya dusmesi cok nadirdir. Buna gore de geometri bilen kisi zeka kazanir. Ibn Haldun (1332-1406)
mm arrow Matematik makaleleri arrow Hayat ve aksiyomları
Hayat ve aksiyomları Yazdır E-Posta
İçerik İndeksi
Hayat ve aksiyomları
Sayfa 2
Sayfa 3

    Birçoğumuzun matematikle alâkası, sadece tahsil hayatımızda gördüğümüz derslerle sınırlı kalmıştır. Bir kısmımız mecbur olduğumuz için, bir kısmımız da ilgi duyduğu veya kabiliyeti olduğu için matematiği sevmiş olabilir. Fakat büyük çoğunluk, matematiğin hayatlarında pek kullanılmadığını veya kabiliyetlerinin ve çalışma alanlarının farklı olduğunu bahane edip matematiğe çekingen bir tavırla yaklaşır. Hattâ bir kısmımız, matematiği pek sevmez.

İlk bakışta cebir, geometri, logaritma gibi adlarla alt bölümlere ayırdığımız matematiği zor bir ders kabul etsek de, farkında olmadan hayatımızın birçok alanında kullanıyor olmamız ve felsefenin ilk dönemlerinden itibaren "bütün ilimlerin anası" olarak kabul görmesi sebebiyle üzerinde durulmaya değer bir alandır.

İnsanlar eşya ve hadiseleri yorumlarken, hayat karşısındaki duruş ve düşüncelerini yenilerken aslında hep matematiğin verileriyle hareket eder. Aşağıda anlatacağımız "aksiyom" ve "teorem" bunun en açık misalleridir. İşte bizler, matematiğe biraz da "matematik felsefesi" diyebileceğimiz bu zaviyeden bakabilirsek, onun çekinilecek bir saha olmadığını daha rahat kavrarız.

Matematiğin temelini tanımlar teşkil eder. Aslında bir bakıma bütün bilimlerin temeli tanımlardır. Kullandığımız şeylerin ne olduğu (ne işe yaradığı, hangi özelliklerinin olduğu) tanımlarla ifade edilir. Matematik üzerine çalışma yapan öğrencilerin çoğunun tanımları hararetle tartıştığını çok sık görürüz. Bunun sebebi tanımlardaki küçük bir değişikliğin veya küçük bir yanlış anlamanın, pek çok şeyin değişmesine ve dolayısıyla yanlışların doğru ve doğruların yanlış olarak ortaya çıkmasına yol açabilecek olmasıdır.

Bir şeyin tarifini yaparken başka şeyleri kullanmak gerekir. Meselâ 'masa'nın tarifini yaparken 'tahta' veya 'metal' gibi pek çok kavramı kullanmamız gerekir. Bu durumda 'Tahta nedir?' veya 'Metal nedir?' sorularıyla karşılaşırız. Yani, henüz o an için tanımsız olan nesneleri tarif edip onların ne olduklarını öğrenmek isteriz. Tahtayı tanımlarken ağacı, metali tarif ederken de madeni kullandığımızda bu defa bunların ne olduğu sorusuyla karşılaşırız. Bu sorular böylece devam edip gider. Peki nereye kadar gider?



<Önceki   Sonraki>
MATEMATİKÇİ PULU
HİPERBOLİK UZAY
FOTO MATEMATİK
C.Sequin Galeri
MATEMATİK AFİŞİ
G.W.Hart galeri
KARİKATÜR
M.C.Escher galeri
MATEMATİK KİTABI
MATEMATİK FİLMİ